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This paper is concerned with optimal control problems for the von Kidrman equations with
distributed controls. We first show that optimal solutions exist. We then show that Lagrange
multipliers may be used to enforce the constraints and derive an optimality system from which
optimal states and controls may be deduced. Finally we define finite element approximations of
solutions for the optimality system and derive error estimates for the approximations.
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1. Introduction

The von Kérmén equations for a clamped plate are given by (see, e.g., [7] or [9])

A1+ 3(a el =0 in @

and
Al — [, 2] = Ag in O

where

(. 4] = Npog 9y 824 s Py 8¢ .

’ 8z} 8z3 * 0z} 8z} " Oz123 07122
Here, Q0 is a bounded, convex polygonal domain in R 3, ¢ denotes the Airy stress function, ¢
denotes the deflection of the plate in the direction normal to the plate, and \g is an external load
normal to the plate which depends on the loading parameter .
The boundary conditions on I' = 9Q are given as follow:

W’x 11’2

== 9 =0 onT,
where 8(-)/8n denotes the normal derivative in the direction of the outer normal to I'.

For reasons to be explained later we introduce appropriate rescalings, i.e., by replacing 1 by
Ath, Y2 by Ay, and g by Ag. Then we can rewrite the Kdrmén equations as follows:

A%+ Sl il =0 n @, (1.1)
Al ~ Alr, el = Ag in @, (12)

and
1/)1--%—- -%—@-—0 onT. (1.3)

We introduce the standard Sobolev spaces (see, e.g., [1])
HY(Q) = {¢em(n) | v=o, %%:o on r} ,

H} (@) = (B3(®@)", H-3(0)= (B}(Q)", aad H-2(Q)=(B}®)",

the bilinear form
ab,9)= [ Avasdn vy,6€ BYR)

and the L?(Q)-inner product

(¢,¢)=/0¢¢«m V.0 € Q).

Then we may define the following weak formulation of the von Kirm4n equations (1.1)-(1.3): find
¥ = (th,¥2)T € H}(Q) such that

a(¥1, 1) + %(Wz,%],m) =0 Vé € H}(D) (1.4)




and
a(¥2,#1) — A([vh, 2], ¢2) = Mg, 42) V2 € HY(R). (1.5)
Here the notation (-, ) stands for the L3(2)-inner product and (-,-) the duality pairing. Using the
identity
([9,4),C) = ([#.¢),¢) Vv, .(€ H}(D), (1.6)

one can show that for each g € H-%(Q), (1.4)-(1.5) possesses at least one solution ¥ = (yy,¥2)T €
H3(12) and that all solutions of (1.4)-(1.5) satisfy the a priori estimate

li¥nllz + llgallz < Cllgll-2; (1.7)

see, e.g., [9], for details. In the sequel a solution to (1.1)-(1.3) will be understood in the sense of

(1.4)-(1.5).
Given a desired state ¢, = (%o,%o)T € L3(Q), we define the functional

J(%,9) = T(¥1,¥1,9)

A A 1.8
='2'/0(('1’1—¢10)’+(1/’2—¢20)’)d9+5/092d9 (18)
for all ¥ = (t1,¥2)T € H3(R) and g € L2(R). We then consider the following optimal control
problem associated with the von Kirman plate equations:

min{J(¥,9) | ¥ € H(N), g€ O} subject to (1.4)-(1.5), (1.9)

where © is a convex, closed subset of L2(2). The physical interpretation of this optimal control
problem is that we wish to match a desired Airy stress distribution and a deflection distribution
on the entire plate by choosing an (optimal) external load g from an admissible set ©.

Our plan is as follows. In §2, we show that an optimal solution exists. In §3, we use Lagrange
multiplier techniques to derive an optimality system from which optimal states and controls can be
deduced. We then specialize to the case © = L2({2) and derive an optimality system of equations.
In §4, we define conforming finite element approximations of the optimality system of equations
and derive error estimates.

2. Existence of an optimal solution

We will prove in this section that an optimal solution exsits for the minimization problem
(1.9).

THEOREM 2.1. There ezists a (¢,g) € H3 () x © such that (1.8) is minimized subject to
(1.4)«(1.5). '

Proof. We choose a ¢(® € © and let @ = (${”, ${")7 ¢ HZ(Q) be a solution of

o, 1) + 3 (7, 7, 41) =0 ¥ 61 € BY(@)

and

a(¥3”, 42) ~ AW, 971, 42) = Mg, ) V¢ € HY(Q).




The existence of such a $® was established in [9]. We see that ($(?, g(®) € H2(R2)x © satisfies the
constraints (1.4)-(1.5) and J(i(o),g(")) < co. We also note that J (¥, g) > 0 for all (¥,g) € X x6.
Thus we may choose a minimizing sequence {(${™,g("))} C H2(€)x O such that for some constant
M >0,

T, g™) < M, (2.1)
a(v(™, 1) + '5\([¢§”’,¢§“’],¢1) =0 Vé € HYQ) (2.2)

and
a(P{™, d2) = A([B{™, ¥iM), 2) = Mg™), ¢2) ¥ ¢ € HE(Q). (2.3)

Using (2.1) and the definition of the functional .7 we deduce that the sequence {||g(™|}o} is bounded
so that by the a priori estimate (1.7), the sequence {||¢(") {2} is bounded as well. Hence by choosing
a subsequence, we have that

g™ — g in L3(Q)

and
™ —~¢ in HI(Q)

for some g € L*() and $ € HE(2). Using the convexity and closedness of O, we deduce that
g € ©. By the compact imbedding H3(Q) —— L?(Q), we obtain ™ — ¢ in L3(Q) so that for
each ¢ = (¢1,42)T € H3(Q), we have that (also using the continuous imbedding H3(Q) — L°(Q))

.1 n) ,(n . 1 n n
Yim (CER YA Jim - (v§™, 11, 97)
= 3 (2,411, 9) = 3 (n, ), )

and
Jim — (1,4, 02) = lim - (194", 0a). 957)
= ~ (¥, 42l #0) = = (B, $al, )

Hence we may pass to the limit in (2.2)-(2.3) to show that (4, g) satisfies (1.4)-(1.5).
Finally, we use the sequential lower semi-continuity of the functional J to obtain that

J(%,9) < lim 7($™,gm).

Hence, we have proved that a solution (¥,9) € H3(f2) x © exists that minimizes (1.8) subject to
(1.4)-(1.5). O

3. An optimality system of equations

In this section we assume that (,g) € H3(R2) x © is an optimal solution for the minimization
problem (1.9) and we attemp to characterize the optimal solution as the solution for a system
of partial differential equations. To be precise, we use Lagrange multiplier rules to derive an
optimality system of equations.




We define the Lagrangian for the constrained minimization problem (1.9) as follows:
L2 = T#,9) - {albr,m) + 5 (2, ¥l m)
+a(¥2,m) - A([¥1, ¥l m) - z\(y,m)}

for all (¥,9,9) € H(R) x L*(2) x HF(R).
By formally taking variations in the Lagrangian with respect to ¢ and g, we obtain:

a(C1,m) = A([#3,m], 1) = A1 - 10, 1) VG € HY(Q), (3.1)
a(Gz,m) + A([¥2,m}, 2) ~ (1, mal, G2) ( 32)
= M2 ~ ¥20,(2) V(2 € H{(Q) .
and A N
5(2,2)*!-'\(",')2)‘5(919)—'\(9,'72)20 Vze€®O. (33)
For each € € (0,1) and each t € O, we set 2 = et + (1 — €)g € © in (3.3) to obtain
eTL,z-(t-g,t—g)+€(t—.¢1,y)+e(t—y,f)z) >0 Vte®
so that, after dividing by ¢ > 0 and then letting ¢ — 0+, we obtain
(t-9,9+m)>0 Vte®O. (3.4)

Now we show that there does exist an 9 € H3(Q) satisfying (3.1)-(3.3), or equivalently, (3.1)-
(3.2) and (3.4), so that we are justified to compute a triplet (¥, g,9) from (1.4)-(1.5), (3.1)-(3.2)
and (3.4). In this paper we will not address the uniqueness of solutions for the system (1.4)-(1.5),
(3.1)-(3.2) and (3.4).

We first quote the following abstract Lagrange multiplier rule whose proof can be found in
[10].

THEOREM 3.1. Let X1 and X; be two Banach spaces and © an arbitrary set. Suppose J is a
functional on X; x © and M a mapping from X; x © to X3. Assume that (u,g) is a solution to
the following constrained minimization problem:

M(u,g) = 0 and there ezists an € > 0 such that J(u,g9) < J(v,2)

35
for all (v, z) such that |ju — v|jx, < € and M(v,2)=0. (35)

Let U be an open neighborhood of u in X1. Assume further that the following conditions are
satisfied:

(A) for each z € ©, v J(v,z) and v — M(v,2) are Fréchet-differentiable at v = u;

(B) for anyv € U, 21,22 € O, and v € [0, 1], there ezists a z, = z,(v, 21, 22) such that

M(v,z)) = yM(v,z21) + (1 — )M (v, 22)




and
J(v,29) S 1T(v,21) + (1 = 1) T (v, 22) ;
(C) Range(My(u,g)) is closed with a finite codimension ;
and
(D) the algeraic sum My(u,g)X1 + M(u,0) contains 0 € X2 as an interior point,

where My(u, g) denotes the Fréchet derivative of M with respect to u. Then, there ezistsaan € X
such that
(m, Mu(u, g)v) — (Ju(u,9),0) =0 Vve X,

(or eguivelently, [Mu(u, g)}*n — Ju(u,9) = 0) and
';'gg L("’ 2, '7) = ‘C(u’ 9 ") ’

where L(u,g,n) = J(u,g)—(n, M(u,g)) is the Lagrangian for the constrained minimization problem
(2.5) and where Ju(u,g) denotes the Fréchet derivative of J with respect tou. O

We now define some spaces and operators in order to rewrite the constraint equations (1.4)-
(1.5) into a form that will facilitate our verification of the assumptions in Theorem 3.1.

We define the spaces X = H3(Q), Y = H-3(Q), G = L*(Q), and Z = L}(N). By compact
imbedding results, Z << Y. The control set © is a closed, convex subset of G = L2(f2). We also
note that Y = X*.

We define the continuous linear operator A € L(X;Y) as follows: for ¢ € X = H3(Q),
AY = f €Y = H-3(Q) if and only if

a(Y1, 1) = (f, ) VY € HF(Q)

and

a(¥2,42) = (fa,42) V2 € H(D).

It can be easily verified that A is self-adjoint, invertible, and A-! € L(Y; X).
We define the (differentiable) nonlinear mapping N : X — Y by

_ {32, 91)
”“")‘(’-m,m) veex

or equivalently

(N(#),8) = 3 (40, ¥ 60) — (1, 9al.d2) ¥ = (41, 62)7 € X

fe-(3)

(Kg,$) = —(9,42) Vé=(d,d)eX.

and define K : g € L3(R) —» Y by

or equivalently,




Clearly, the constraint equations (1.4)-(1.5) can be expressed as
AY+AN($)+rKg=0.

We are now in a position to prove the existence of a Lagrange multiplier g € H(Q) that
satisfies (3.1)-(3.2) and (3.4).

THEOREM 3.2. Assume (¥,9) € H3(Q)X O is an optimal solution that minimizes (1.8) subject
to (1.4)<(1.5). Then, for almost all A € A, there ezists a Lagrange multiplier n € H}(Q) satisfying
the Euler equations (3.1)«(3.2) and (3.4).

Proof. We define a mapping M : H3(?) x 6 — H-3(Q) (i.e., X x @ = Y) by

M(¢,z)= A+ A\N@)+AKz V(¢,2)€ HI(Q)x 6.

We see that minimizing (1.8) subject to (1.4)-(1.5) can be stated as minimizing J (¢, g) subject to
M(¥,9) = 0. We first verify that the hypotheses (A)-(C) of Theorem 3.1 hold with X; = X and
Xa=Y.

Obviously, for each z € 6, the mappings ¢ — J(@,2) and ¢ — M(4,z) are both Fréchet
differentiable, i.e., (A) holds.

Since © is convex and the mapping K is linear, we have that for any ¢ € H3(R), 21 € 6,
23 € © and ¥ € (0,1), the element z, = 721 + (1 ~ 7)22 belongs to © and

M($,zy) = A+ AN($)+ ) Kz,
= 1(A$+AN($) + (1 - 7)(Ad+AN($)
+2(1K21 + (1 - 7)Kz))
=1M($,n1)+ (1 —7)M($,22).

Moreover, the mapping g ~ ||g||3 is obviously convex from O into R so that
A 2. A ,
T(#z) = = olls + 5l + (1 - 7)alls

< 2 (V18- olls + (1 = )16 oll) + 3 (1 120l + (1 = ) l1al?)
= 7T () +(1-7) T($, 7).

Thus, (B) holds.
The operator M,(&, g) from X to Y is defined by

My($,9)- 6= A$+ AN(9)-¢ Ve X =H}®),

or simply,
My($.9)= A+ AN'(¥),

where for any ¢ € X, the operator N/($) : X — Y is given by
N b= (g B8 ) vé=@arex.
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Thus, using the definition of [,:], we obtain that N/(¢) ¢ € L}I(Q) = Z. Using the compact
imbedding Z —<— Y, we see that N/(¢¥) is a compact operator from X to X. As a result,
My(9,9) = A+ AN'(¢) = A(I + XA-'N'(¢)) is a Fredholm operator so that it has a closed
range with a finite codimension, i.e., (C) holds.

We now verify that the hypothesis (D) holds for almost all A. In fact, if A # 0 and (1/A) ¢
o(—A-1N'(¥)), where o(— A~ N'(¥)) denotes the spectrum of the operator (—A~! N’(¢)), then
it follows that

Y = Range(A(I + A A-1N'($))) = Range(Mw(ﬁ,g))

so that Range(M¢(¢, g)) contains 0 € Y as an interior point, i.e., (D) holds. Since the spectrum
of a compact operator is at most countable, we conclude that for almost all A, (D) holds.

Hence, by Theorem 3.1, we obtain that for almost all A, there exists a § € Y* = H3(Q) such
that

A+ AIN(B)]" 0= Tg($,9) = 0 (3.6)

and
L(%,9,1) < L(¥,z,m) Vz€O. (3.7)

Recalling the definition of the operators A and N'(y) as well as the fact that A is self-adjoint, i.e.,
A* = A, we see that (3.6) is equivalent to (3.1)-(3.2). Using the definition of the Lagrangian, we
easily see that (3.7) is simply a restatement of (3.3), the latter being equivalent to (3.4). Thus we
have proved that a Lagrange multiplier § € HZ() exists such that (3.1)-(3.2) and (3.4) hold. O

Remark. Now we can explain the rescalings that were introduced in §1. With these rescalings,
the parameter A appears in the form of an eigen value in the operator M¢(¢,g) = A+ AN'(y)
so that spectrum theories for compact operators can be readily employed in the proof of Theorem
32. 0O

So far © has only been assumed to be a closed, convex subset of L2(f2). In the sequel we
specialize to the case ® = L?(2). Then we can obtain two improvements in Theorem 3.2, the first
being that the results of Theorem 3.2 now hold for all A, the second being that (3.4) becomes an
equality.

THEOREM 3.3. Assume © = L2(Q) and (¥, g) € HZ(R) x L2(Q) is an optimal solution that
minimizes (1.8) subject to (1.4)-(1.5). Then, for all A € A, there exists a Lagrange multiplier
n € H3(Q) satisfying the Euler equations (3.1)-(3.2) and

(t,g+m)=0 Vte L3(Q). (3.8)

Proof. In view of Theorem 3.2 and its proof, we only need to verify (D) when (1/)) €
o(—A-1N'(u)), i.e., we need to show that for each f € H-3(R), there exists a § € L?() and a
% € H3(Q) such that

AP+ AN'($)-$+2Kj=f,

or equivalently,
a(th, 1) + A([¥3, %), 1) = (fr,h) V1 € HY(Q) (3.9)




“(J’hé?) - A([J’hdﬂ]a@) - "([V’h'i)?]’%) - A(g)‘b?)

. .10
= (fi,¢2) VY2 € HY(Q). (3.10)

To show this, we first let $ € H3(Q) be a solution of

a($r, 1) + A([¥2, %2l ) = (fi, 1) V1 € HAQ)

and

a($3,42) - A([$1,¥a), 1) = (fa, $2) ¥V ¢ € HI(D).

The existence of such a $ can be shown in a manner similar to that for showing the existence of
a solution to the von Kirmdn equation; the key step is that by adding the two equations with the
test function ¢ replaced by 4, we have the a priori estimate

a(th, %) + a($a, ) = (fi, 1) + (fa, ) -

Now, having chosen such a i, we simply set § = —[1[»1,12:2]. Note that regularity results for the

biharmonic equation applied to (1.4)-(1.5) yield ¥ € H4(R) (see [3]). Hence, using imbedding

theorems we deduce that § € L3(f). It is obvious that § and ¥ satisfy (3.9)-(3.10). Thus, we have

verified (D) so that by Theorem 3.1, there exists a 9 € X such that (3.1)-(3.2) and (3.4) hold.
Finally, (3.4) trivially reduces to (3.8) in the present case of © = L2(2). O

Combining the results of §2 and this section we see that we have proved the existence of a
triplet (¥,9,9) € H3(Q) x L?(Q) x H3(N) such that the system (1.4)-(1.5), (3.1)-(3.2) and (3.8)
is satisfied. For convenience we collect these equations here to form an Optimality System of

FEquations:

(b, ¢1) + 3 ([0, 9ol ) = 0 Vo € BY(Q), (3.11)
a(¥3,¢2) — (¥, ¥1], 42) = Mg, 42) V ¢z € HE(D), 13.12)
a(G1,m) — A({¥2,m], C1) = A(¥1 — $10,$1) V(1 € HE(R), (3.13)
“(Ch’h) + A(W‘h'h];@) - /\([%afh], (2) (3 14)
= A2 — ¥20,(2) V(2 € H}(Q) :
and
(t,g+m)=0 Vite L?(Q). (3.15)

4. Finite element approximations and error estimates

4.1. Definition of finite element approximations.

A finite element discretization of the optimality system (3.11)-(3.15) is defined in the usual
manner. For simplicity, we will only study conforming finite element approximations in this paper.
However, the error estimation techniques used in this paper are equally applicable to mixed finite
element approximations based on the Hellan-Hermann-Johnson scheme for biharmonic equations.




See [4] (also [5]) for the definition and discussions of the mixed Hellan-Hermann-Johnson scheme
for biharmonic equations.

We first choose families of finite dimensional subspaces X» C H3(R2) and G* C L?() param-
eterized by a parameter A that tends to zero and satisfying the following approximation properties:
there exists a constant C' and an integer r such that

inf (@@ s < Chm|dllmiz, YVPEH™IQ), 1<m<r (4.1)
¢ exr
and
inf |z - zh|jo < Ch™||z)lm, Vz€ H™(Q),1<m<r. (4.2)
'leGh

One may consult, e.g., [2] and {6] for some finite element spaces satisfying (4.1) and (4.2). For
example, one may choose X» = V4 x Vh where V4 is the piecewise quintic-C?(Q) finite element
space constrained to satisfy the given boundary conditions and defined with respect to a family of
triangulations of . In this case, h is a measure of the grid size.

Once the approximating spaces have been chosen, we may formulate the approximate problem
for the optimality system (3.11)-(3.15): seek $* € X+, gh € Gk, and g € X+ such that

a(#,90) + 5 (43, 941,80) =0 Vol e vh, (43)
a(v7,¢7) — A([9f, ¥1]. 4) = Mgh.83) Vi eV, (4.4)
a((t m) = A9}, ) () = At — 0, (P) V(P eVH, (4.5)
a(¢fym) + A([¥3, nf1. ¢F) — M([et 1. F) = M¥f - ¥a0,(F) V(G eVH (4.6)
and
(zh,gh+n2)=0 VzheGh. 4.7)

Note that in the last equation, if G = V', then we have g = —5$ so that the variable g* can be
eliminated to simplify the approximate problem. But in general we have to deal with the entire
system (4.3)-(4.7).

4.2. Quotation of results concerning the approximation of a class of nonlinear prob-
lems.

The error estimate to be derived in Section 4.3 makes use of results of [4] and [8] concerning the
approximation of a class of nonlinear problems. These results imply that, under certain hypotheses,
the error of approximation of solutions of certain nonlinear problems is basically the same as the
error of approximation of solutions of related linear problems. Here, for the sake of completeness,
we will state the relevant results, specialized to our needs.

The nonlinear problems considered in [4] and [8] are of the following type. For given ) € A,
we seek ¥ € X such that

HA\Y)=v+TG(A\¥)=0, (4.8)

where 7 € L(Y; X), G is a C? mapping from A X X into J, X and ) are Banach spaces, and A
is a compact interval of R. We say that {(A,9())): A € A} is a branch of solutions of (4.8) if




A — ¥(A) is a continuous function from A into X such that H(A,(A)) = 0. The branch is called
a regular branch if we also have that Hy (A, ¥())) is an isomorphism from X into X for all A € A.
Here, Hy(-,:) denotes the Fréchet derivative of H(:,-) with respect to the second argument. We
assume that there exists another Banach space 2, contained in ), with continuous imbedding,
such that

Gu(MY)EL(X;2) VA€EAandype X, (4.9)

where Gy(-, ) denotes the Fréchet derivative of G(-,) with respect to the second argument.
Approximations are defined by introducing a subspace X» C X and an approximating operator
Th € L(Y; XP). Then, given X € A, we seek b € X'» such that

HE(X, Ph) = b + ThG(A, 9*) = 0. (4.10)
Concerning the operator 7%, we assume the approximation properties
. h_ —0 v -
ic_rpo (Th-Twllx=0 “we) (4.11)

and
bim (7% ~ T)llcz.x) = 0 (4.12)

Note that whenever the imbedding Z C Y is compact, (4.12) follows from (4.11) and, moreover,
(4.9) implies that the operator 7Gy(A,¥) € L(X; X') is compact.

We can now state the result of [4] or [8] that will be used in the sequel. In the statement of
the theorem, D2G represents any and all second Fréchet derivatives of G.

THEOREM 4.1. Let X and Y be Banach spaces and A a compact subset of R. Assume that
G is a C? mapping from A X X into Y and that D2G is bounded on all bounded sets of A x X.
Assume that (4.9), (4.11), and (4.12) hold and that {)(X); A € A} is a branch of regular solutions
of (4.8). Then, there erists a neighborhood O of the origin in X and, for h < ho small enough, a
unique C? function A — (L) € X such that {{#(A); X € A} is a branch of regular solutions of
(4.10) and ¥r(A) — ¥(A) € O for all A € A. Moreover, there ezists a constant C > 0, independent
of h and A, such that

l¥™(A) — v(Mllx < CTH - THG(A¥(Mllx YAreA. O (4.13)

4.3. Error estimates.

In this section we will derive error estimates for the finite element approximations of solutions
of the optimality system.

We begin by fitting the optimality system and its finite element approximations into the
abstract framework in §4.2.

Weset Y = X xGxY*, Y=Y XxX* Z=2x2Z,and X» = X» x Gk x (Y*)h. Then
we have that Z is compactly imbedded into ). (We recall that the spaces X = HZ(Q) = Y>,
Y = H-3Q)= X*, Z = L}() and G = L?(N) were all introduced in §3.) We define 7 € L(); X)
as follows: T(7,#) = (%, §,#) for (7,7) € Y and (9, §,%) € X if and only if

a(¥,4) = (7,4) Vée H3Q), (4.14)
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a(ij,w) = (f,w) Vwe H}(Q) (4.15)
and

t,§g+m)=0 Vite L3(9). (4.16)
Similarly, the operator 72 € L(Y; A'») is defined as follows: ThA(7,7) = ({o",gh, i*) for (F,#) € ¥
and (', 3%, #") € XM if and only if

a($"4") = (7,6") Vé"e xh, (4.17)
a(@*,wh) = (F,wh) Vwhe Xh (4.18)

and
(th,gh+72)=0 Vit eGh. (4.19)

'I‘_he nonlinear mapping G : A X X — ) is defined as follows: G (z\,(@, %) = (7,7) for X € A,
(¢a§9i’) € xv and (i,i) € J’ if and only if

T= (A[:/‘»i[%fﬁg)

d - -
N . ( Al il + A1 — $0) )
=Al¥a, ] + Aln, 2] + AM(¥2 — ¥20) ) °

or equivalently,

(600 ($,3.9).(4,0)

= —2 (B il 1) + A1, Bl ) + NG5 )

+ A([&I, 772]7 CI) + A(J"l - %0,(1) = A(['/;?a ﬁl]’ C?)
+A([#r, i), G2) + M2 — ¥0,(2) ¥ ($,€) € HJ(D) x HJ(D).
Using the operators N and K introduced in §3, we can also write the defining equations for

g(Aa (&y A i“')) as follows: -
F=AN($) + AK§ (4.20)

and ) )
F= ANB0 - 2B - ¥0). (4.21)

It is easy to see that the optimality system (3.11)-(3.15) and its finite dimensional counterpart
(4.3)-(4.7) can be written as

(*19?") + Tg(’\’ (ﬁ’g"')) =0

and
($", g%, 1) + THG(A, (", 9, 9%)) =0,

respectively, i.e., with ¥ = (¥,9,9) and ¥ = (¢",g",n"), in the form of (4.8) and (4.10), respec-
tively.
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We now turn to the verification of the assumptions in Theorem 4.1. We first examine the
approximation results for the linear operators 7 and 7h.
LEMMA 4.2. For every (7,7) € ),

S 0.
im (T ~ TR, #)llx = 0

Fusthermore, if T(7,%) = (¥,§,7) € H™+2(Q) x H™(Q) x H™+3(Q), then
(T = TH)F Hllx < Chm([$llms2 + Nllm + Nillmsz) -

Proof. For each given (7,7) € Y, let ($,,7) = T(7,7) and (§ ,3%@") = THF,F), ie.,
($,3,%) € X and (ih,.&",ﬂ") € Xh satisfy (4.14)-(4.16) and (4.17)-(4.19), respectively. From the
well-known results concerning the approximation of biharmonic equations (see, e.g., [2] and [6]),
we obtain that

. uu sh
tim (1~ $"l2 = 0

and
lim i - "l = 0. (4.22)

Furthermore, if $ € H™+2(Q) and i) € H™+2(R), then

~ ~h -
ll¥— ¥ llz < ChA™|l$llm+2

and
5 — &™)z < Ch™||fjllm+2 -

(4.16) and (4.19) yields (g — g*, z%) = —(i2 — 72, z*) for all z» € G». We then have that

ig - "I} = (6 — §*,3 — §*)
= (g - ghag‘ zh) + (g _ghvzh - gh)
= (g—ghvg-zh)_(ﬁz 'ﬁgazh_jh)
- 1, . 1,. .
< 15 - 21 + 713 - 3MB + 51 ~ 13
1 . - - ) SN
+5ll2% - gll3 + i — ARG + 71g - 513

so that
15 = §*flo < C (Il§ — 2*llo + llfia — 7} llo) -
It follows from (4.2) and (4.22) that lims_.p ||§ — |0 = 0. Hence,

. . . ~ =~h o - " .
lm (T = TRYF,P)llx = tim (19 = 8" lls + 13 - 3%l + 15 - 7)) = 0.
Furthermore, if (¥, §,#) € H™+3() x H™(Q) x H™+2(R), then
13 = @llo < Chm(lgllm + llim+2)
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so that N
T = TH)FF)lx = b= ® |2 + 113 — 34llo + I — "2
< Chm(l¥llm+2 + lghm + lliillm+2) . O

Next, we examine the derivatives of the mapping G.

LEMMA 4.3. The mapping G is twice continuously Fréchet differentiable; the second order
derivative is bounded on all bounded subsets of A x X; and the first order derivative maps X' into
Z continuously, i.e., gwM)(,\, (¥,9,m)) € L(X; 2).

Proof. Using imbedding theorems, Hélder inequalities and the fact that G consists of poly-
nomial maps, we deduce that the mapping G is twice continuously Fréchet differentiable and the
second order derivative is bounded on all bounded subsets of A x &A'.

A simple calculation shows that gw,’,m (A, (¥,9,m)) € L(X; D) is given by

2 N'($)-$+Kj
g(**’!") (A, (#9#7)) : (*’ g’ﬂ) =2 ([N"(*) . &},( 'z + [N'(*y)]‘ . i) - &)

where the operators N and K along with their derivatives were introduced in §3. Sobolev imbedding
theorems imply that

’ cdh = [3!’3"7’2] -
N'(#)-# = (—wn,sbzl—wz,w) €Li(®),

W= (g, 2T 1) €
and .
e #)a= (g, P8 ) e s,

Of course, $ € L'(R2). From the definition of the operator K we see that K maps L?({) into
{0} x L*(9) C L'(R). Hence the operator Gy, . ) (A, (¥,9,m)) maps X into Z. Moreover, using
Holder inequalities and Sobolev imbedding theorems it is easy to see that

"g(ﬁ,,'m (’\a (*a 9 ’7)) * (3, g i')"L‘ Q)

< C(llel + linll2 + 1) (I¥lla + Il + llillz)

so that
g(*,g,ﬂ) (’\1 (¢, 9, '7)) € L(/Y; Z) . D0

Next, we recall the notion of regular solutions. A solution ($(X),g()),m())) of the optimality
system (3.11)-(3.15) is called regular if

(1+76(8,9:m( (#.9,1)) - (B.5,7) = E 4, )
has a unique solution (&, g,%) € X for any (€,h,0) € X. As T is invertible, (& h, ) = T(F,7) with
(7,7) € Y = H-3(R) x H-2(). Thus, (¥(1),9(A),n())) is a regular solution of the optimality
system (3.11)-(3.15) if

(1+T6.9,m(% ($:9,m)) - ($:3, ) = T(7,7)

13




has a unique solution (&, §,%) € X for any (f,7) € Y, or equivalently, the following system (for
the unknowns (¥, §,#)) is uniquely solvable for any (7,7) € ¥:

a(t1, 1) + (¥, %], 1) = (Fr, 1) YV 1 € HE(D), (4.23)
a(b1,61) = A[r, ¥, 6a) — M, ¥l 42) - (3. ) (4.24)

= (f, 1) Y € HYD), '
a((lyi'l) - X([%)%LCI) - '\(['Z’Q, m]a (1) - A('Z’h (l) (4 25)

=(R,0) Y e D), '
a(Ga, ) + M[¥2, ), 2) + A([2, ), G2) = M{r, 7], G2) (4.26)

- AM[¥1,m), 2) = A(¥2,(2) = (R, (2) VG2 € HE(R)
and

(t,g+m)=0 Vte L(Q). (4.27)

Note that the linear operator appearing on the left hand side of (4.23)-(4.27) is obtained by
linearizing the optimality system (3.11)-(3.15) about (¢, g,%).
LEMMA 4.4. For almost all A, solutions ($(1),g(A),7(A)) of the optimality system (3.11)-

(3.15) are regular.
Proof. The system (4.23)-(4.27) can be rewritten as

(1+278(9,9,m)($,3.5) = T(F, ), (4.28)

where the linear operator S(¥,9,9) : X — Y is defined by

S(8,9.) - (9,5:5) = 5 G o (0 (9,9,9) - ($,5.5)

=( N'(¥)-9+ K§ )
[N"(¥) - 9] -0+ [N'($)]* -7 - ¢

It was established in Lemma 4.3 that the mapping Gi.om (A, (#,9,m)) is compact from X into .
Now, T € L(Y; X), so that (I + ATS(#,9,n)) is a compact perturbation of the identity operator
from X to X'. Thus, for almost all A, (4.28), or equivalently (4.23)-(4.27), is uniquely solvable, i.e.,
for almost all A, the solution ($(A),g(A),m(A)) of the optimality system (3.11)-(3.15) is regular.
a

We are now in a position to derive error estimates. In the following theorem, we will assume
that the solution ($(X),g(A),n(})) of the optimality system (3.11)-(3.15) is regular. Lemma 4.4
guarantees that this is indeed the case for almost all \. Lemmas 4.2 and 4.3 verified all the
assumptions in Theorem 4.1. Thus we are led to the following error estimates.

THEOREM 4.5. Assume that A is a compact interval of R 4 and that there ezists a branch
{($(X), 9(A),m(N)) : X € A} of regular solutions of the optimality system (3.11)-(3.15). Assume
that the finite element spaces Xh and G* satisfy the hypotheses (4.1)-(4.2). Then, there ezists a
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§ > 0 and an ho > 0 such that for h < ho, the discrete optimality system (4.3)-(4.7) has a unique
branch of regular solutions {(¥"(1), gh()),74())) : A € A} satisfying

(19" (0) = $()llz + llg"(A) - g(Mllo + lIn*(A) = m(Mfla} < 8 for all A€ A.

Moreover,

Lim{||9"(2) = $(V)llz + llg(2) = g(Mllo + llm~(3) - w(A)ll2} = 0,

uniformly in A € A.
If, in addition, the solution of the optimality system satisfies (¥(A),g(A),m())) € H™+2(Q) x
H™(Q) x H™+2(Q2) for A € A, then there ezists a constant C, independent of h, such that

() ~ #*(V)llz + llg(A) — g*(Allo + [Im(A) — 9A(N)ll2
< Chm ([l$(A)llm+2 + llg(MN)llm + 9(A)llms2) ,

uniformlyin A€ A. O
5. Conclusions

We studied an optimal control problem for the von Karman equations in this paper. We first
gave the mathematical statement of the problem and proved the existence of an optimal solution.
We then applied the Lagrange multiplier rules to derive an optimality system of equations that the
optimal state must satisfy (the use of Lagrange multiplier rules was justifed). We finally defined
finite element approximations for the optimality system and derived optimal error estimates. The
functional we minimized was a tracking functional (i.e., the tracking of the Airy stress function
and the normal deflection). The control we used was a distributed control (i.e., the external load).
However, the methods used in this paper apply equally well to optimal control problems with other
objectives (e.g., minimizing the stress functional in some areas) and/or other types of controls (e.g,
boundary controls).
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